\(p\)-adic \(L\)-functions of Hilbert modular forms
DOI10.5802/aif.1425zbMath0808.11035OpenAlexW2322400435MaRDI QIDQ1341645
Publication date: 8 January 1995
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=AIF_1994__44_4_1025_0
\(p\)-adic \(L\)-functiongrowth conditioncomplex-valued distributiongrowth distributionHilbert cusp formnon-archimedean Mellin transform
Other analytic theory (analogues of beta and gamma functions, (p)-adic integration, etc.) (11S80) Special values of automorphic (L)-series, periods of automorphic forms, cohomology, modular symbols (11F67) (p)-adic theory, local fields (11F85)
Related Items (12)
Cites Work
- \(p\)-adic \(L\)-functions for CM fields
- Nonvanishing of \(L\)-functions for \(\mathrm{GL}(2)\)
- Non-Archimedean L-functions of Siegel and Hilbert modular forms
- The special values of the zeta functions associated with Hilbert modular forms
- Motives over totally real fields and \(p\)-adic \(L\)-functions
- On \(p\)-adic \(L\)-functions of \(GL(2) \times{} GL(2)\) over totally real fields
- On automorphic forms on \(mathrm{GL}_2\) and Hecke operators
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: \(p\)-adic \(L\)-functions of Hilbert modular forms