Random walks on the affine group of local fields and of homogeneous trees
DOI10.5802/aif.1433zbMath0809.60010OpenAlexW2025225622MaRDI QIDQ1341654
Wolfgang Woess, Vadim A. Kaimanovich, Donald I. Cartwright
Publication date: 8 January 1995
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=AIF_1994__44_4_1243_0
Dirichlet problemrandom walkslaw of large numberscentral limit theoremPoisson boundaryharmonic functionsasymptotic properties of random productsgeometric properties of homogeneous trees
Trees (05C05) Sums of independent random variables; random walks (60G50) Harmonic analysis on homogeneous spaces (43A85) Discrete potential theory (31C20) Analysis on (p)-adic Lie groups (22E35) Probability measures on groups or semigroups, Fourier transforms, factorization (60B15)
Related Items
Cites Work
- A proof of Oseledec's multiplicative ergodic theorem
- Boundaries of random walks on graphs and groups with infinitely many ends
- Amenability, unimodularity, and the spectral radius of random walks on infinite graphs
- Lyapunov exponents, symmetric spaces, and a multiplicative ergodic theorem for semisimple Lie groups
- Free groups in linear groups
- Automorphism groups of graphs as topological groups
- Amenability and Kunze-Stein property for groups acting on a tree
- Polynomidentitäten und Permutationsdarstellungen lokalkompakter Gruppen
- On Fröhlich's conjecture for rings of integers of tame extensions
- Marches aléatoires sur les groupes de Lie
- Meromorphe Differentialgleichungen
- Poisson spaces of locally compact groups
- On Martin Boundaries for the Direct Product of Markov Chains
- Random Walks on Infinite Graphs and Groups - a Survey on Selected topics
- Convergence to Ends for Random Walks on the Automorphism Group of a Tree
- Comportement asymptotique du noyau potentiel sur les groupes de Lie
- Stochastic groups
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item