The Plancherel measure for \(p\)-forms in real hyperbolic spaces
From MaRDI portal
Publication:1345109
DOI10.1016/0393-0440(94)90047-7zbMath0832.43012OpenAlexW2026354842MaRDI QIDQ1345109
Atsushi Higuchi, Roberto Camporesi
Publication date: 26 February 1995
Published in: Journal of Geometry and Physics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/0393-0440(94)90047-7
Mellin transformPlancherel measureheat kernelLorentz groupHodge-de Rham operatorreal hyperbolic spaceantisymmetric tensor fields
Related Items
Heat kernels on the \(AdS_{2}\) cone and logarithmic corrections to extremal black hole entropy ⋮ Logarithmic corrections to twisted indices from the quantum entropy function ⋮ Logarithmic corrections to extremal black hole entropy in \( \mathcal{N}=2\), \(4\) and \(8\) supergravity ⋮ Character integral representation of zeta function in \(\mathrm{AdS}_{d+1}\). I: Derivation of the general formula ⋮ One-loop supergravity on \(\mathrm{AdS}_{4}\times S^{7}/\mathbb{Z}_{k}\) and comparison with ABJM theory ⋮ Exceptional \(F(4)\) higher-spin theory in \(\mathrm{AdS}_{6}\) at one-loop and other tests of duality ⋮ Divergences and boundary modes in \( \mathcal{N}=8 \) supergravity ⋮ One-loop test of free \(SU(N)\) adjoint model holography ⋮ On exponentially suppressed corrections to BMPV black hole entropy ⋮ Quasinormal modes of \(D\)-dimensional de Sitter spacetime ⋮ The heat kernel on \(\text{AdS}_3\) and its applications ⋮ On the analytic continuation of the Minakshisundaram-Pleijel zeta function for compact symmetric spaces of rank one ⋮ On the eigenfunctions of the Dirac operator on spheres and real hyperbolic spaces ⋮ Character integral representation of zeta function in \(\mathrm{AdS}_{d+1}\). II: Application to partially-massless higher-spin gravities ⋮ Non-topological logarithmic corrections in minimal gauged supergravity ⋮ Residue representations -- the rank one case ⋮ Logarithmic correction to black hole entropy in universal low-energy string theory models ⋮ Harmonic analysis for differential forms on complex hyperbolic spaces ⋮ Analysis of the entanglement with centers ⋮ \(p\)-forms on \(d\)-spherical tessellations ⋮ Partition functions of \(p\)-forms from Harish-Chandra characters ⋮ Toward microstate counting beyond large \(N\) in localization and the dual one-loop quantum supergravity ⋮ The energy of unit vector fields on the 3-sphere ⋮ The heat kernel on AdS ⋮ Hyperbolic cylinders and entanglement entropy: gravitons, higher spins, \(p\)-forms ⋮ \(\mathrm{CFT}(4)\) partition functions and the heat kernel on \(\mathrm{AdS}(5)\) ⋮ Black hole one-loop determinants in the large dimension limit ⋮ Central charges, elliptic genera, and Bekenstein-Hawking entropy in \(\mathcal{N} = (2, 2)\) \(\mathrm{AdS}_3/\mathrm{CFT}_2\)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Harmonic analysis for vector fields on hyperbolic spaces
- On the spectra of Laplace operator on \(\Lambda^*(S^n)\)
- The differential form spectrum of hyperbolic space
- The spinor heat kernel in maximally symmetric spaces
- Opérateur de courbure et laplacien des formes différentielles d'une variété riemannienne
- Spectra and eigenforms of the Laplacian on \(S^n\) and \(P^n(C)\)
- Zeta function regularization of path integrals in curved spacetime
- A classification of the unitary irreducible representations of \(SO_ 0 (N,1)\)
- On induced representations
- L 2 Harmonic Forms on Rotationally Symmetric Riemannian Manifolds
- On a recurrence formula for elementary spherical functions on symmetric spaces and its applications to multipliers for the spherical Fourier transform.
- Elementary spherical functions on symmetric spaces.
- The Plancherel formula for the universal covering group of de Sitter group
- The Plancherel formula for the Lorentz group of $n$-th order
- Sur les représentations unitaires des groupes de Lorentz généralisés
- Some Properties of the Eigenfunctions of The Laplace-Operator on Riemannian Manifolds
- A Theory of Spherical Functions. I