A unified approach for constructing fast two-step Newton-like methods
DOI10.1007/BF01292765zbMath0817.65042MaRDI QIDQ1345711
Publication date: 6 August 1995
Published in: Monatshefte für Mathematik (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/178670
error analysisnonlinear integral equationsBanach spaceradiative transfermajorant methodlinear operator equationfast two-step Newton-like methodsintegral equations of Uryson-typeNewton-Kantorovich-type hypotheses
Iterative procedures involving nonlinear operators (47J25) Numerical methods for integral equations (65R20) Other nonlinear integral equations (45G10) Numerical solutions to equations with nonlinear operators (65J15)
Related Items (10)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On the solution of equations with nondifferentiable and Ptak error estimates
- On the method of tangent hyperbolas in Banach spaces
- Sharp error bounds for Newton's process
- A note on the Halley method in Banach spaces
- A fourth-order nonlinear iterative method in Banach spaces
- The convergence of a Halley-Chebysheff-type method under Newton- Kantorovich hypotheses
- On an iterative algorithm of order 1.839… for solving nonlinear operator equations∗)
- Hydrodynamics of Oscillating Disks in Viscous Fluids: Density and Viscosity of Normal Fluid in Pure<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="normal">He</mml:mi></mml:mrow><mml:mrow><mml:mn>4</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>from 1.2°K to the Lambda Point
- Quadratic equations and applications to Chandrasekhar's and related equations
- The majorant method in the theory of newton-kantorovich approximations and the pták error estimates
- Convergence domains of certain iterative methods for solving nonlinear equations
- On the monotone convergence of general Newton-like methods
This page was built for publication: A unified approach for constructing fast two-step Newton-like methods