Admissible convergence for the Poisson-Szegö integrals
From MaRDI portal
Publication:1346080
DOI10.1007/BF02926442zbMath0813.32030MaRDI QIDQ1346080
Ewa Damek, Andrzej Hulanicki, Richard C. Penney
Publication date: 7 June 1995
Published in: The Journal of Geometric Analysis (Search for Journal in Brave)
admissible convergencesymmetric domainsSiegel domainBergman-Shilov boundary\(L^ p\)-functionsPoisson-Szegö integrals
Analysis on real and complex Lie groups (22E30) Hermitian symmetric spaces, bounded symmetric domains, Jordan algebras (complex-analytic aspects) (32M15) Boundary value problems on manifolds (58J32) Complex spaces with a group of automorphisms (32M99)
Related Items
Hua operators on bounded homogeneous domains in \(\mathbb{C}^ n\) and alternative reproducing kernels for holomorphic functions, Weighted inequalities and a.e. convergence for Poisson integrals in light-cones, The Paley-Wiener theorem for the Hua system, The Cauchy-Szegö kernel for the Hardy space of 0-regular functions on the quaternionic Siegel upper half space
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Admissible convergence of Poisson integrals in symmetric spaces
- The Poisson integral for generalized half-planes and bounded symmetric domains
- Boundaries for left-invariant sub-elliptic operators on semidirect products of nilpotent and abelian groups.
- Left-invariant degenerate elliptic operators on semidirect extensions of homogeneous groups
- Boundary Behavior of Poisson Integrals on Symmetric Spaces
- H² spaces of generalized half-planes