The Green formula and \(H^ p\) spaces on trees
DOI10.1007/BF02571903zbMath0819.31004MaRDI QIDQ1346349
Fausto Di Biase, Massimo A. Picardello
Publication date: 24 August 1995
Published in: Mathematische Zeitschrift (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/174728
Green formulaspaces of homogeneous typetreesarea functionnontangential maximal functionHardy spaces of harmonic functionsboundary of finite subtreegood lambda inequalities
Trees (05C05) Sums of independent random variables; random walks (60G50) Maximal functions, Littlewood-Paley theory (42B25) (H^p)-spaces (42B30) Discrete version of topics in analysis (39A12) Abstract harmonic analysis (43A99) Discrete potential theory (31C20)
Related Items (6)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Sur les groupes hyperboliques d'après Mikhael Gromov. (On the hyperbolic groups à la M. Gromov)
- Parabolic maximal functions associated with a distribution
- Harmonic analysis on \(n\)-dimensional vector spaces over local fields. III: Multipliers
- Extrapolation and interpolation of quasi-linear operators on martingales
- Analyse harmonique non-commutative sur certains espaces homogènes. Etude de certaines intégrales singulières. (Non-commutative harmonic analysis on certain homogeneous spaces. Study of certain singular integrals.)
- \(H^p\) spaces of several variables
- A Maximal Function Characterization of the Class H p
This page was built for publication: The Green formula and \(H^ p\) spaces on trees