Completeness of integer translates in function spaces on \(\mathbb{R}\)
DOI10.1006/jath.1996.0106zbMath0872.46021OpenAlexW2065065158MaRDI QIDQ1352901
Aharon Atzmon, Alexander Olevskiĭ
Publication date: 12 October 1997
Published in: Journal of Approximation Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1006/jath.1996.0106
generatorsweighted function spacesrearrangement invariant spacescomposition operatorinteger translatesuniqueness setsMarcinkiewiczWiener Tauberian theoremLorentz\(\mathbb{Z}\)-cyclic elementsOrliczproblem of completeness
Spaces of measurable functions ((L^p)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.) (46E30) Sobolev spaces and other spaces of ``smooth functions, embedding theorems, trace theorems (46E35) Abstract approximation theory (approximation in normed linear spaces and other abstract spaces) (41A65) Banach spaces of continuous, differentiable or analytic functions (46E15)
Related Items (19)
This page was built for publication: Completeness of integer translates in function spaces on \(\mathbb{R}\)