A use of ideal decomposition in the computer algebra of tensor expressions
From MaRDI portal
Publication:1355117
DOI10.4171/ZAA/756zbMath0872.20017MaRDI QIDQ1355117
Publication date: 13 October 1997
Published in: Zeitschrift für Analysis und ihre Anwendungen (Search for Journal in Brave)
finite groupscomputer algebraminimal left idealsgroup ringsprimitive orthogonal idempotentstensor expressions
Lua error in Module:PublicationMSCList at line 37: attempt to index local 'msc_result' (a nil value).
Related Items (4)
Jacobians with group actions and rational idempotents ⋮ A characterization of the dependence of the Riemannian metric on the curvature tensor by Young symmetrizers ⋮ GROUP-THEORETIC APPROACH FOR SYMBOLIC TENSOR MANIPULATION ⋮ The Canon package: a fast kernel for tensor manipulators
Uses Software
Cites Work
- SYMMETRICA, an object oriented computer-algebra system for the symmetric group
- Fundamental algorithms for permutation groups
- ATENSOR -- REDUCE program for tensor simplification
- Representations of permutation groups. Part I
- Normal forms for tensor polynomials. I. The Riemann tensor
- On Regular Rings
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: A use of ideal decomposition in the computer algebra of tensor expressions