The theorem of Kuiper-Kuo-Bochnak-Lojasiewicz at infinity
From MaRDI portal
Publication:1355482
DOI10.5802/afst.832zbMath0876.57046OpenAlexW2313631505MaRDI QIDQ1355482
Ha Huy Vui, Pierrette Cassou-Noguès
Publication date: 26 November 1997
Published in: Annales de la Faculté des Sciences de Toulouse. Mathématiques. Série VI (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=AFST_1996_6_5_3_387_0
Related Items (6)
Topological triviality of deformations of regular mappings ⋮ On the Łojasiewicz exponent at infinity for polynomial functions ⋮ Equivalence of mappings at infinity ⋮ Effective Lojasiewicz gradient inequality for Nash functions with application to finite determinacy of germs ⋮ On analytic equivalence of functions at infinity ⋮ Finite determinacy of non-isolated singularities
Cites Work
- Milnor numbers and the topology of polynomial hypersurfaces
- On the bifurcation set of a polynomial function and Newton boundary
- Milnor fibration at infinity
- On irregular links at infinity of algebraic plane curve
- A version at infinity of the Kuiper-Kuo theorem
- Propriétés topologiques des polynômes de deux variables complexes et automorphismes algébriques de l'espace \(C^2\)
- Families of polynomials with total Milnor number constant
- On \(C^0\)-sufficiency of jets of potential functions
- Singular Points of Complex Hypersurfaces. (AM-61)
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: The theorem of Kuiper-Kuo-Bochnak-Lojasiewicz at infinity