Nilpotent orbits and complex dual pairs
From MaRDI portal
Publication:1355616
DOI10.1006/jabr.1996.6910zbMath0870.22007OpenAlexW1991868335MaRDI QIDQ1355616
Witold Kraśkiewicz, Andrzej Daszkiewicz
Publication date: 19 August 1997
Published in: Journal of Algebra (Search for Journal in Brave)
Full work available at URL: https://semanticscholar.org/paper/f13c515b98802f487f81f1d178a78f429366c732
symplectic grouprepresentationsLie algebrasmoment mapnilpotent orbitcomplex symplectic vector spaceHowe's correspondencecomplex reductive dual pair
Related Items
Characters of irreducible unitary representations of 𝑈(𝑛,𝑛+1) via double lifting from 𝑈(1), Manifestly covariant worldline actions from coadjoint orbits. I: Generalities and vectorial descriptions, Theta correspondence and the orbit method, Howe correspondence and Springer correspondence for real reductive dual pairs, Compositions of theta correspondences, Dual pairs and Kostant-Sekiguchi correspondence. II: Classification of nilpotent elements, Theta lifting of nilpotent orbits for symmetric pairs, Nilpotent orbits of \(\mathbb Z_4\)-graded Lie algebra and geometry of moment maps associated to the dual pair \((U(p,q),U(r,s))\), Dual pairs and Kostant-Sekiguchi correspondence. I, THETA CORRESPONDENCE I — SEMISTABLE RANGE: CONSTRUCTION AND IRREDUCIBILITY
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Whittaker vectors and associated varieties
- Closures of conjugacy classes of matrices are normal
- Characters, dual pairs, and unipotent representations
- Characters, dual pairs, and unitary representations
- On the geometry of conjugacy classes in classical groups
- Transcending Classical Invariant Theory