The classification of Lagrangian bundles over surfaces
From MaRDI portal
Publication:1356792
DOI10.1016/S0926-2245(96)00024-1zbMath0921.58018OpenAlexW1969506193WikidataQ115337664 ScholiaQ115337664MaRDI QIDQ1356792
Publication date: 26 September 1999
Published in: Differential Geometry and its Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/s0926-2245(96)00024-1
2-torusglobal action-angle coordinatesLiouville-Arnold theoremcompact fibrefiberwise symplectomorphismLagrangian bundlelattice on a manifold
Related Items
Universal Lagrangian bundles, Classification of Lagrangian fibrations over a Klein bottle, Poisson manifolds of strong compact type over 2-tori, Local torus actions modeled on the standard representation, Integral affine 3-manifolds
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Classification of \(T^ 2-bundles\) over \(T^ 2\)
- Rigidité symplectique dans le cotangent de \(T^ n\). (Symplectic rigidity on the cotangent bundle of \(T^ n)\)
- Affine manifolds with nilpotent holonomy
- Symplectic structures on \(T^ 2\)-bundles over \(T^ 2\)
- On the existence of a connection with curvature zero
- New Invariants of Open Symplectic and Contact Manifolds
- On global action-angle coordinates
- Shorter Notes: Some Simple Examples of Symplectic Manifolds