Greenberg's conjecture and relative unit groups for real quadratic fields
From MaRDI portal
Publication:1361502
DOI10.1006/jnth.1997.2126zbMath0893.11044OpenAlexW2088239121WikidataQ123011059 ScholiaQ123011059MaRDI QIDQ1361502
Publication date: 24 July 1997
Published in: Journal of Number Theory (Search for Journal in Brave)
Full work available at URL: https://semanticscholar.org/paper/2ddeb05ce4f6be77e2db6ae0758ba5980d7e7790
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On the theory of cyclotomic fields
- Bases normales, unités et conjecture faible de Leopoldt. (Normal bases, units, and the weak Leopoldt conjecture)
- On Vandiver's conjecture and \({\mathbb{Z}}_ p\)-extensions of \({\mathbb{Q}}(\zeta_{p^ n})\)
- On \({\mathbb{Z}}_ p\)-extensions of real quadratic fields
- Greenberg's conjecture and the Iwasawa polynomial
- Normal bases and \(\lambda\)-invariants of number fields
- On \(\mathbb Z_{\ell}\)-extensions of algebraic number fields
- A note on Greenberg's conjecture for real abelian number fields
- On the Iwasawa Invariants of Totally Real Number Fields
- The Iwasawa λ-invariants of ℤₚ-extensions of real quadratic fields
- A capitulation problem and Greenberg’s conjecture on real quadratic fields
- Computation of ℤ₃-invariants of real quadratic fields
- Cyclotomic units and Greenberg’s conjecture for real quadratic fields
This page was built for publication: Greenberg's conjecture and relative unit groups for real quadratic fields