Dimension estimates for representable equivalences of module categories
From MaRDI portal
Publication:1364310
DOI10.1006/jabr.1996.7005zbMath0884.16005OpenAlexW2063361725WikidataQ57571341 ScholiaQ57571341MaRDI QIDQ1364310
Publication date: 28 September 1997
Published in: Journal of Algebra (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1006/jabr.1996.7005
tilting modulescategories of modulesinjective cogeneratorsGrothendieck groupscategory equivalencesglobal dimensionstilted algebras*-modulestilting theory of Artin algebras
Module categories in associative algebras (16D90) Grothendieck groups, (K)-theory, etc. (16E20) Representations of associative Artinian rings (16G10) Homological dimension in associative algebras (16E10) General module theory in associative algebras (16D10)
Related Items
\(n\)-star modules over ring extensions., Cotorsion torsion triples and the representation theory of filtered hierarchical clustering, Tilting modules of finite projective dimension and a generalization of \(*\)-modules., *- Modules over ring extensions, Tilting via torsion pairs and almost hereditary Noetherian rings., Estimates of global dimension, Global dimension of the endomorphism ring and \(*^n\)-modules., \(*^s\)-modules.
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Quasi-Frobenius rings and generalizations. QF-3 and QF-1 rings. Notes by Claus Michael Ringel
- Representable equivalences between categories of modules and applications
- Tilting modules of finite projective dimension
- Density and equivalence
- On the structure of *-modules
- Every *-module is finitely generated
- Quasi-tilting modules and counter equivalences
- Tilting modules and tilting torsion theories
- Hereditary torsion theory counter equivalences
- A counter-example in ring theory and homological algebra
- Modules with decompositions that complement direct summands
- Tilting, cotilting, and serially tilted rings
- Some remarks on equivalences between categories of modules
- Tilted Algebras
- Existence criteria and construction methods for certain classes of tilting modules
- Partial cotilting modules and the lattices induced by them
- Tilting modules and ∗-modules
- Tilting and torsion theory counter equivalences