Using Schubert basis to compute with multivariate polynomials
From MaRDI portal
Publication:1364323
DOI10.1006/aama.1997.0526zbMath0898.05082OpenAlexW1987895844MaRDI QIDQ1364323
Sébastien Veigneau, Axel Kohnert
Publication date: 28 September 1997
Published in: Advances in Applied Mathematics (Search for Journal in Brave)
Full work available at URL: https://semanticscholar.org/paper/4d443cbc1b29ea0c6544227df8f746553e8ee61c
Symmetric functions and generalizations (05E05) Determinantal varieties (14M12) Grassmannians, Schubert varieties, flag manifolds (14M15) Polynomials, factorization in commutative rings (13P05)
Related Items
Bumpless pipe dreams encode Gröbner geometry of Schubert polynomials, Bumpless pipe dreams and alternating sign matrices, Gröbner geometry of Schubert polynomials through ice, Involution pipe dreams, Gröbner geometry of Schubert polynomials through ice, Advanced determinant calculus: a complement
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Schubert polynomials and the Littlewood-Richardson rule
- Flags, Schubert polynomials, degeneracy loci, and determinantal formulas
- SYMMETRICA, an object oriented computer-algebra system for the symmetric group
- A Pieri formula in the Grothendieck ring of a flag bundle
- Noncommutative symmetric functions
- The Yang-Baxter equation, symmetric functions, and Schubert polynomials
- The Geometry of Flag Manifolds
- Désingularisation des variétés de Schubert généralisées
- SCHUBERT CELLS AND COHOMOLOGY OF THE SPACESG/P