On convergence of the averages \({1\over N}\sum_{n=1}^N f_1(R^nx)f_2(S^nx)f_3(T^nx)\)
From MaRDI portal
Publication:1364386
DOI10.1007/BF01320190zbMath0911.28012OpenAlexW2072038186MaRDI QIDQ1364386
Publication date: 23 April 1999
Published in: Monatshefte für Mathematik (Search for Journal in Brave)
Full work available at URL: https://eudml.org/doc/178748
Measure-preserving transformations (28D05) General groups of measure-preserving transformations (28D15) Entropy and other invariants (28D20)
Related Items (12)
Some open problems on multiple ergodic averages ⋮ Norm convergence of continuous-time polynomial multiple ergodic averages ⋮ Multiple recurrence and convergence results associated to \(\mathbb F_P^\omega\)-actions ⋮ The Brin Prize works of Tim Austin ⋮ Deducing the multidimensional Szemerédi theorem from an infinitary removal lemma ⋮ Norm convergence of nilpotent ergodic averages ⋮ Norm convergence of multiple ergodic averages for commuting transformations ⋮ On the norm convergence of non-conventional ergodic averages ⋮ A non-singular dynamical system without maximal ergodic inequality ⋮ Convergence of diagonal ergodic averages ⋮ Pleasant extensions retaining algebraic structure. I ⋮ Pleasant extensions retaining algebraic structure. II
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Extensions of ergodic group actions
- Ergodic behavior of diagonal measures and a theorem of Szemeredi on arithmetic progressions
- Théorèmes ergodiques pour des mesures diagonales
- Résolution d'une équation fonctionnelle
- Weakly mixing PET
- Théorèmes ergodiques pour une translation sur un nilvariété
- Double recurrence and almost sure convergence.
This page was built for publication: On convergence of the averages \({1\over N}\sum_{n=1}^N f_1(R^nx)f_2(S^nx)f_3(T^nx)\)