A study of a sequence of classical orthogonal polynomials of dimension 2
From MaRDI portal
Publication:1369252
DOI10.1006/JATH.1996.3078zbMath0885.42015OpenAlexW2014982069MaRDI QIDQ1369252
Publication date: 7 April 1998
Published in: Journal of Approximation Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1006/jath.1996.3078
Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.) (33C45) Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis (42C05) Generalized hypergeometric series, ({}_pF_q) (33C20)
Related Items (6)
Operational rules and d-orthogonal polynomials of Laguerre type ⋮ Classical \(2\)-orthogonal polynomials and differential equations ⋮ On semi‐classical d‐orthogonal polynomials ⋮ Ond-orthogonal polynomials of Sheffer type ⋮ On some operators varying the dimensional parameters of d-orthogonality ⋮ 2-Orthogonal polynomials and Darboux transformations. Applications to the discrete Hahn-classical case
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Two-dimensional orthogonal polynomials, their associated sets and the co- recursive sets
- Une caractérisation des polynômes strictement 1/p orthogonaux de type Scheffer. Étude du cas \(p=2\). (A characterization of strictly 1/p orthogonal polynomials of Scheffer type)
- Une caractérisation des polynômes \(d\)-orthogonaux classiques
- L'orthogonalité et les récurrences de polynômes d'ordre supérieur à deux
- LES POLYNÔMES ORTHOGONAUX „CLASSIQUES“ DE DIMENSION DEUX
- Sur l'équation de M. Pierre Humbert
- On derivatives of orthogonal polynomials
- Über lineare Differentialgleichungen, deren Lösungen einer Rekursionsformel genügen
This page was built for publication: A study of a sequence of classical orthogonal polynomials of dimension 2