Extension and restriction of holomorphic functions
From MaRDI portal
Publication:1369882
DOI10.5802/aif.1592zbMath0881.32005OpenAlexW2317257727MaRDI QIDQ1369882
Klas Diederich, Emmanuel Mazzilli
Publication date: 20 October 1997
Published in: Annales de l'Institut Fourier (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=AIF_1997__47_4_1079_0
Continuation of analytic objects in several complex variables (32D15) (H^p)-spaces, Nevanlinna spaces of functions in several complex variables (32A35) Integral representations; canonical kernels (Szeg?, Bergman, etc.) (32A25) Holomorphic functions of several complex variables (32A10) Pseudoconvex domains (32T99)
Related Items
Extension and restriction of holomorphic functions on convex finite type domains ⋮ Gain of regularity in extension problem on convex domains ⋮ Restriction of holomorphic functions on finite type domains in \({\mathbb{C}^{2}}\) ⋮ Weights of holomorphic extension and restriction ⋮ Restriction of Hardy space to linear subvarieties ⋮ Extension from linear subvarieties for the Bergman scale of spaces on convex domains
Cites Work
- On the extension of \(L^ 2\) holomorphic functions
- Geometric and analytic boundary invariants on pseudoconvex domains. Comparison results
- The Bergman kernel on uniformly extendable pseudoconvex domains
- On the extension of L 2 holomorphic functions. II
- Henkin-Ramirez kernels with weight factors
- Pseudoconvex domains with real-analytic boundary
- On the extension of \(L^ 2\) holomorphic functions. III: Negligible weights
- Effective bounds for very ample line bundles
- Extension of holomorphic L2-functions with weighted growth conditions
- Application des techniques $L^2$ à la théorie des idéaux d'une algèbre de fonctions holomorphes avec poids
- CONTINUATION OF BOUNDED HOLOMORPHIC FUNCTIONS FROM SUBMANIFOLDS IN GENERAL POSITION TO STRICTLY PSEUDOCONVEX DOMAINS
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item