Monge-Ampère equations of geometric origin on certain algebraic varieties
From MaRDI portal
Publication:1370395
DOI10.1006/jfan.1996.3087zbMath0889.53028OpenAlexW1992870792MaRDI QIDQ1370395
Publication date: 9 December 1997
Published in: Journal of Functional Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1006/jfan.1996.3087
Ricci curvatureCalabi conjecturepositive first Chern classcomplex Monge-Ampère equationsEinstein-Kähler metrics
Special Riemannian manifolds (Einstein, Sasakian, etc.) (53C25) Relations of PDEs with special manifold structures (Riemannian, Finsler, etc.) (58J60)
Related Items
Lower envelope of admissible functions on the Grassmannian \(G_{2,4}\mathbb C\) in presence of symmetries ⋮ The $\alpha $-invariant on certain surfaces with symmetry groups ⋮ Lower bounds of Tian's invariant under toric invariances ⋮ Tian invariant on generalized Calabi manifold ⋮ Einstein-Kähler metrics on certain complex bundles ⋮ Einstein-Kähler metrics on a class of bundles involving integral weights.
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Métriques d'Einstein-Kähler et exponentiel des fonctions admissibles. (Einstein-Kähler metrics and the exponential of admissable functions.)
- Réduction du cas positif de l'équation de Monge-Ampère sur les variétés Kählériennes compactes à la démonstration d'une inégalité
- Multiplier ideal sheaves and Kähler-Einstein metrics of positive scalar curvature
- On Kähler-Einstein metrics on certain Kähler manifolds with \(C_ 1(M)>0\)
- Einstein-Kähler metrics on manifolds with positive first Chern class
- An obstruction to the existence of Einstein Kaehler metrics
- On the ricci curvature of a compact kähler manifold and the complex monge-ampére equation, I
- Estimations $\mathrm{L}^2$ pour l'opérateur $\bar \partial$ d'un fibré vectoriel holomorphe semi-positif au-dessus d'une variété kählérienne complète