On a super Lie group structure for the group of \(G^\infty\) diffeomorphisms of a compact \(G^\infty\) supermanifold
From MaRDI portal
Publication:1377237
DOI10.1016/S0393-0440(96)00051-4zbMath0898.46062WikidataQ115338839 ScholiaQ115338839MaRDI QIDQ1377237
Publication date: 3 March 1998
Published in: Journal of Geometry and Physics (Search for Journal in Brave)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On a `super' version of Lie's third fundamental theorem
- On the local theory of infinite pseudogroups of continuous transformations
- The infinite groups of Lie and Cartan. I: The transitive groups
- Groups of diffeomorphisms and the motion of an incompressible fluid
- Théorie des bornologies et applications. (Theory of bornologies and applications)
- Two classes of classical subgroups of Diff(M)
- A generalization of normed rings
- Even sectors of Lie superalgebras as locally convex Lie algebras
- Graded manifolds and vector bundles: A functorial correspondence
- Enlargeable graded Lie algebras of supersymmetry
- A global theory of supermanifolds
- Super Lie groups: global topology and local structure
- Some Integrable Subalgebras of the Lie Algebras of Infinite Dimensional Lie Groups
- Sur L'Intégrabilité des Sous–Algèbres de lie en Dimension Infinie
- Locally multiplicatively-convex topological algebras