The set of equivalent classes of invariant star products on \((G;\beta_ 1)\)
From MaRDI portal
Publication:1377254
DOI10.1016/S0393-0440(97)80010-1zbMath0890.22012OpenAlexW2021598668MaRDI QIDQ1377254
Publication date: 4 June 1998
Published in: Journal of Geometry and Physics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/s0393-0440(97)80010-1
Applications of Lie groups to the sciences; explicit representations (22E70) Applications of global differential geometry to the sciences (53C80)
Cites Work
- Existence of star-products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds
- Geodesic symmetries and invariant star products on Kähler symmetric spaces
- Déformations d'algèbres associées à une variété symplectique (les \(*_\nu\)-produits)
- Closed star products and cyclic cohomology
- Deformation theory and quantization. II: Physical applications
- The hidden group structure of quantum groups: Strong duality, rigidity and preferred deformations
- A simple geometrical construction of deformation quantization
- Algebraic index theorem for families
- Non-compact quantum groups associated with Abelian subgroups
- Algebraic index theorem
- Deformations of the algebra of functions of a symplectic manifold. Comparison between Fedosov and de Wilde, Lecomte
- The cohomology structure of an associative ring
- On the deformation of rings and algebras
- Quantum symmetry
- Deformation quantization for actions of 𝑅^{𝑑}
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item