Mathematical Research Data Initiative
Main page
Recent changes
Random page
Help about MediaWiki
Create a new Item
Create a new Property
Create a new EntitySchema
Merge two items
In other projects
Discussion
View source
View history
Purge
English
Log in

Pointwise Fourier inversion on rank one symmetric spaces and related topics

From MaRDI portal
Publication:1378479
Jump to:navigation, search

DOI10.1006/jfan.1997.3146zbMath0904.43006OpenAlexW1986600724MaRDI QIDQ1378479

Mark A. Pinsky, William O. Bray

Publication date: 11 February 1998

Published in: Journal of Functional Analysis (Search for Journal in Brave)

Full work available at URL: https://doi.org/10.1006/jfan.1997.3146

zbMATH Keywords

Riemannian manifoldsrank one symmetric spacespointwise inversion of Fourier transforms


Mathematics Subject Classification ID

Fourier and Fourier-Stieltjes transforms and other transforms of Fourier type (42B10) Harmonic analysis on homogeneous spaces (43A85) Fourier and Fourier-Stieltjes transforms on nonabelian groups and on semigroups, etc. (43A30)


Related Items

Weighted norm inequalities for integral transforms, On a theorem of Chernoff on rank one Riemannian symmetric spaces



Cites Work

  • Transformation intégrale de Weyl et théorème de Paley-Wiener associes à un opérateur différentiel singulier sur \((0,\infty)\)
  • Harmonic analysis as spectral theory of Laplacians
  • Generalized spectral projections on symmetric spaces of noncompact type: Paley-Wiener theorems
  • Pointwise fourier inversion and related eigenfunction expansions
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
  • Unnamed Item
Retrieved from "https://portal.mardi4nfdi.de/w/index.php?title=Publication:1378479&oldid=13527779"
Tools
What links here
Related changes
Special pages
Printable version
Permanent link
Page information
MaRDI portal item
This page was last edited on 31 January 2024, at 16:20.
Privacy policy
About MaRDI portal
Disclaimers
Imprint
Powered by MediaWiki