Asymptotic expansion and generalized Schläfli integral representation for the eigenfunction of a singular second-order differential operator
DOI10.1006/jmaa.1997.5713zbMath0908.43010OpenAlexW1973538515MaRDI QIDQ1378623
Khalifa Trimèche, M. N. Lazhari, Lakhdar Tannech Rachdi
Publication date: 10 April 2000
Published in: Journal of Mathematical Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1006/jmaa.1997.5713
spherical functionssecond-order differential equationsVolterra integral equationsLaplace-Beltrami operatorsRiemannian symmetric spacesBessel, Legendre, Gegenbauer and Whittaker functionsSchläfli integral representation
Asymptotic expansions of solutions to PDEs (35C20) Harmonic analysis and spherical functions (43A90)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Transformation intégrale de Weyl et théorème de Paley-Wiener associes à un opérateur différentiel singulier sur \((0,\infty)\)
- Harmonic analysis of probability measures on hypergroups
- A new proof of a Paley-Wiener type theorem for the Jacobi transform
- Expansions for spherical functions on noncompact symmetric spaces
- Two-point homogeneous spaces
- Une Transformation de Laplace–Jacobi
- A Uniform Asymptotic Expansion of the Jacobi Polynomials with Error Bounds
- A Uniform Expansion for the Eigenfunction of a Singular Second-Order Differential Operator
- Théoreme de Paley-Wiener associe à un opérateur différentiel singulier sur \((0,+\infty)\)
This page was built for publication: Asymptotic expansion and generalized Schläfli integral representation for the eigenfunction of a singular second-order differential operator