Spectral properties of Schrödinger operators with irregular magnetic potentials, for a \(\text{spin }\frac{1}{2}\) particle
From MaRDI portal
Publication:1378684
DOI10.1006/jmaa.1997.5642zbMath0902.35076OpenAlexW2092756012MaRDI QIDQ1378684
Publication date: 3 March 1998
Published in: Journal of Mathematical Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1006/jmaa.1997.5642
General topics in linear spectral theory for PDEs (35P05) Asymptotic distributions of eigenvalues in context of PDEs (35P20) Schrödinger operator, Schrödinger equation (35J10)
Related Items (2)
Discreteness of Spectrum and Strict Positivity Criteria for Magnetic Schrödinger Operators ⋮ Beyond the classical Weyl and Colin de Verdière's formulas for Schrödinger operators with polynomial magnetic and electric fields
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Nonclassical eigenvalue asymptotics
- L'asymptotique de Weyl pour les bouteilles magnétiques. (The Weyl asymptotic formula for magnetic bottles)
- Caractérisation du spectre essentiel de l'opérateur de Schrödinger avec un champ magnétique. (Characterization of the essential spectrum of the Schrödinger operator with a magnetic field)
- Spectral properties of Schrödinger operators with magnetic fields for a spin \({1 \over{} 2}\) particle
- Encadrement du N(\(\lambda\) ) pour un opérateur de Schrödinger avec un champ magnétique et un potentiel électrique. (Inclusion of N(\(\lambda\) ) for a Schrödinger operator with magnetic field and electric potential)
- Asymptotic Distribution of Eigenvalues for Schrödinger Operators with Magnetic Fields
- Asymptotic formulae with remainder estimates for eigenvalue branches of the Schrödinger operator $H - \lambda W$ in a gap of $H$
This page was built for publication: Spectral properties of Schrödinger operators with irregular magnetic potentials, for a \(\text{spin }\frac{1}{2}\) particle