Steiner symmetrization is continuous in \(W^{1,p}\)

From MaRDI portal
Publication:1380447

DOI10.1007/s000390050027zbMath0912.46034OpenAlexW2074849352MaRDI QIDQ1380447

Almut Burchard

Publication date: 31 March 1998

Published in: Geometric and Functional Analysis. GAFA (Search for Journal in Brave)

Full work available at URL: https://doi.org/10.1007/s000390050027




Related Items (37)

On a sharp weighted Sobolev inequality on the upper half-space and its applicationsCompactness via symmetrizationDirichlet integrals and Steiner asymmetrySymmetrization in Anisotropic Elliptic ProblemsThe Steiner rearrangement in any codimensionOn iterations of Steiner symmetrizationsThe equality cases in Steiner's projection inequalityAffine Orlicz Pólya-Szegő principle for log-concave functionsMultivalued fixed point index and nonlocal problems involving relative rearrangementSmoothness of the Steiner symmetrizationStability of Pólya-Szegő inequality for log-concave functionsSteiner symmetrization using a finite set of directionsRandom Steiner symmetrizations of sets and functionsVanishing mean oscillation and continuity of rearrangementsThe affine Pólya-Szegö principle: equality cases and stabilityRearrangements in metric spaces and in the Heisenberg groupA new approach to Steiner symmetrization of coercive convex functionsSteiner symmetrization for anisotropic quasilinear equations via partial discretizationAn asymmetric affine Pólya-Szegő principleSYMMETRIZATION AND MINIMAX PRINCIPLESBounds for Sobolev Embedding Constants in Non-simply Connected Planar DomainsOn the Fourier transform of the symmetric decreasing rearrangementsRearrangement transformations on general measure spacesSteiner symmetric extremals in Pólya-Szegő-type inequalitiesSteiner symmetrization \((n-1)\) times is sufficient to transform an ellipsoid to a ball in \(\mathbb{R}^n\)A countable set of directions is sufficient for Steiner symmetrizationAnisotropic symmetrizationNew Pólya-Szegö-type inequalities and an alternative approach to comparison results for PDE'sMinimal rearrangements, strict convexity and critical pointsQuantitative Sobolev and Hardy Inequalities, and Related Symmetrization PrinciplesA quantitative Pólya-Szegö principleThe Petty projection inequality for sets of finite perimeterOrlicz affine isoperimetric inequalities for star bodiesContinuous rearrangement and symmetry of solutions of elliptic problems\(k\)-codimensional projection bodiesThe affine Orlicz Pólya-Szegő principle on \(BV(\Omega )\)Affine Pólya-Szegő inequality on Steiner rearrangement in any codimension




This page was built for publication: Steiner symmetrization is continuous in \(W^{1,p}\)