A characterization of the dependence of the Riemannian metric on the curvature tensor by Young symmetrizers
DOI10.4171/ZAA/813zbMath0904.53030OpenAlexW2012242895WikidataQ115211680 ScholiaQ115211680MaRDI QIDQ1381128
Publication date: 27 January 1999
Published in: Zeitschrift für Analysis und ihre Anwendungen (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.4171/zaa/813
symmetrizationalgebras of tensor polynomialsHerglotz relationspartial derivatives of the curvature tensor
Combinatorial aspects of representation theory (05E10) Methods of global Riemannian geometry, including PDE methods; curvature restrictions (53C21) Differential invariants (local theory), geometric objects (53A55)
Uses Software
Cites Work
- A use of ideal decomposition in the computer algebra of tensor expressions
- Representations of permutation groups. Part I
- Spinorkalkül und Normalkoordinaten
- Normal forms for tensor polynomials. I. The Riemann tensor
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: A characterization of the dependence of the Riemannian metric on the curvature tensor by Young symmetrizers