Kazhdan-Lusztig polynomials for certain varieties of incomplete flags
From MaRDI portal
Publication:1381836
DOI10.1016/S0012-365X(97)00124-6zbMath0915.14029WikidataQ127646326 ScholiaQ127646326MaRDI QIDQ1381836
A. D. Vaĭnshteĭn, Boris Zalmanovich Shapiro, Michael Shapiro
Publication date: 28 June 1999
Published in: Discrete Mathematics (Search for Journal in Brave)
symmetric groupCoxeter groupKazhdan-Lusztig polynomialsSchubert cells\(R\)-polynomials\(P\)-polynomialssingularity of a Schubert variety
Reflection and Coxeter groups (group-theoretic aspects) (20F55) Grassmannians, Schubert varieties, flag manifolds (14M15)
Related Items
Kazhdan-Lusztig \(R\)-polynomials of permutations containing a 231 or 312 pattern, Proof of two conjectures of Brenti and Simion on Kazhdan-Lusztig polynomials, On 1234-nesting Kazhdan–Lusztig R-polynomials for the symmetric group, Kazhdan-Lusztig polynomials for 321-hexagon-avoiding permutations, Formulas for multi-parameter classes of Kazhdan-Lusztig polynomials in \({\mathfrak S}(n)\), Maximal singular loci of Schubert varieties in $SL(n)/B$, Explicit formulae for some Kazhdan-Lusztig polynomials, Kazhdan-Lusztig and \(R\)-polynomials from a combinatorial point of view., Boolean elements in Kazhdan-Lusztig theory.
Cites Work
- Criterion for smoothness of Schubert varieties in Sl(n)/B
- A combinatorial setting for questions in Kazhdan-Lusztig theory
- Small resolutions of singularities of Schubert varieties
- On some generalizations of the Kazhdan-Lusztig polynomials for ``universal Coxeter systems
- Representations of Coxeter groups and Hecke algebras
- Singular locus of a Schubert variety
- A Further Refinement of the Bruhat Decomposition
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item