Feynman rules in \(N=2\) projective superspace. I: Massless hypermultiplets
From MaRDI portal
Publication:1382360
DOI10.1016/S0550-3213(98)00073-XzbMath0976.81113arXivhep-th/9710250OpenAlexW2949678564MaRDI QIDQ1382360
Ulf Lindström, Rikard von Unge, Martin Roček, Steven Wiles, Francisco Gonzalez-Rey
Publication date: 25 March 1998
Published in: Nuclear Physics. B (Search for Journal in Brave)
Full work available at URL: https://arxiv.org/abs/hep-th/9710250
Related Items
Cotangent bundle over Hermitian symmetric space \(E_{7}/E_{6}\times \mathrm{U}(1)\) from projective superspace, On conformal supergravity and harmonic superspace, Supersymmetry and cotangent bundle over non-compact exceptional Hermitian symmetric space, Non-minimal scalar multiplets, supersymmetry breaking and dualities, Supersymmetric sigma model geometry, \( \mathcal{N} = 2 \) supersymmetric sigma-models and duality, 2D \(\mathcal{N} = \left( {4,4} \right)\) superspace supergravity and bi-projective superfields, New holographic limit of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:msub><mml:mrow><mml:mi mathvariant="normal">AdS</mml:mi></mml:mrow><mml:mrow><mml:mn>5</mml:mn></mml:mrow></mml:msub></mml:mrow><mml:mo>⊗</mml:mo><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant="normal">S</mml:mi></mml:mrow><mml:mrow><mml:mn>5</mml:mn></mml:mrow></mml:msup></mml:mrow></mml:math>, Feynman rules in \(N=2\) projective superspace. II: Massive hypermultiplets, On compactified harmonic/projective superspace, 5D superconformal theories, and all that, Hyper-Kähler sigma models on (co)tangent bundles with \(\text{SO}(n)\) isometry, New superconformal multiplets and higher derivative invariants in six dimensions, Partial $ \mathcal{N} $ = 2 supersymmetry breaking and deformed hypermultiplets, \(\mathcal{N} = 2\) supergravity and supercurrents, On higher-spin \(\mathcal{N} = 2\) supercurrent multiplets, All (4,1): Sigma models with \((4, q)\) off-shell supersymmetry, All (4,0): sigma models with (4,0) off-shell supersymmetry, Chiral formulation for hyperKähler sigma-models on cotangent bundles of symmetric spaces, Five-dimensional superfield supergravity, On superconformal projective hypermultiplets, Polar supermultiplets, Hermitian symmetric spaces and hyperKähler metrics, Super-Weyl invariance in 5D supergravity, Goldstino superfields for spontaneously broken \( \mathcal{N} = 2 \) supersymmetry, Off-shell supergravity-matter couplings in three dimensions, Five-dimensional \(\mathcal N = 1\) AdS superspace: geometry, off-shell multiplets and dynamics, Projective coordinates and projective space limit, Non-conformal supercurrents in six dimensions, Conformal supergravity in five dimensions: new approach and applications, New supersymmetric {\(\sigma\)}-model duality, Off-shell superconformal nonlinear sigma-models in three dimensions, Properties of hyper-kähler manifolds and their twistor spaces, On superpotentials for nonlinear sigma-models with eight supercharges, On \({\mathcal N}=2\) supergravity and projective superspace: Dual formulations, PROJECTIVE SUPERSPACE AS A DOUBLE-PUNCTURED HARMONIC SUPERSPACE, Six-dimensional supergravity and projective superfields, Relating harmonic and projective descriptions of \( \mathcal{N}=2 \) nonlinear sigma models, Universal correlation functions in rank 1 SCFTs, The conformal hyperplet
Cites Work