The equation \(ax^2+by^2+cz^2=dxyz\) over quadratic imaginary fields
From MaRDI portal
Publication:1384123
DOI10.1007/BF03322067zbMath0930.11012MaRDI QIDQ1384123
Gerhard Rosenberger, Christine Baer
Publication date: 8 February 2000
Published in: Results in Mathematics (Search for Journal in Brave)
Cubic and quartic Diophantine equations (11D25) Algebraic numbers; rings of algebraic integers (11R04)
Related Items (5)
On the generalized Hurwitz equation and the Baragar-Umeda equation ⋮ Solutions of the Markoff equation in Tribonacci numbers ⋮ Markoff-Rosenberger triples in geometric progression ⋮ Markoff-Rosenberger triples with Fibonacci components ⋮ Solutions of a generalized Markoff equation in Fibonacci numbers
Cites Work
- The Markoff equation \(X^ 2+Y^ 2+Z^ 2=aXYZ\) over quadratic imaginary fields
- Über Diskretheitsbedingungen und die diophantische Gleichung \(ax^ 2+by^ 2+cz^ 2=dxyz\)
- Arithmetic hyperbolic surface bundles
- Fuchssche Gruppen, die freies Produkt zweier zyklischer Gruppen sind, und die Gleichung \(x^2+y^2+z^2=xyz\).
- Minimum of quadratic forms with respect to Fuchsian groups. I.
This page was built for publication: The equation \(ax^2+by^2+cz^2=dxyz\) over quadratic imaginary fields