The Ginzburg-Landau equations of superconductivity and the one-phase Stefan problem
DOI10.1016/S0294-1449(98)80122-4zbMath0904.35083MaRDI QIDQ1389833
Barbara E. E. Stoth, Lia Bronsard
Publication date: 7 July 1998
Published in: Annales de l'Institut Henri Poincaré. Analyse Non Linéaire (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=AIHPC_1998__15_3_371_0
energy methodsmonotonicity propertiessingular limitone-phase Stefan problemtime-dependent Ginzburg-Landau modeltype I superconductivity
Statistical mechanics of superconductors (82D55) NLS equations (nonlinear Schrödinger equations) (35Q55) Free boundary problems for PDEs (35R35)
Related Items (2)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Analysis and Approximation of the Ginzburg–Landau Model of Superconductivity
- Macroscopic Models for Superconductivity
- On a non‐stationary Ginzburg–Landau superconductivity model
- The Stefan problem with surface tension in the three dimensional case with spherical symmetry: nonexistence of the classical solution
- Global existence and uniqueness of solutions of the time-dependent ginzburg-landau model for superconductivity
- Theory of Superconductivity
This page was built for publication: The Ginzburg-Landau equations of superconductivity and the one-phase Stefan problem