Capacity theory and arithmetic intersection theory
DOI10.1215/S0012-7094-03-11722-6zbMath1026.11056OpenAlexW2017819413MaRDI QIDQ1394588
Chi Fong Lau, Ted Chinburg, Robert S. Rumely
Publication date: 12 December 2003
Published in: Duke Mathematical Journal (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1215/s0012-7094-03-11722-6
Pluriharmonic and plurisubharmonic functions (31C10) Varieties over global fields (11G35) Arithmetic varieties and schemes; Arakelov theory; heights (14G40) Potential theory on Riemannian manifolds and other spaces (31C12) Plurisubharmonic extremal functions, pluricomplex Green functions (32U35) Capacity theory and generalizations (32U20)
Related Items (5)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Admissible pairing on a curve
- A new capacity for plurisubharmonic functions
- Diophantine approximations and value distribution theory
- Small points and Arakelov theory
- Positivity and discretion of algebraic points of curves
- Capacity theory on algebraic curves
- The Levi problem on complex spaces with singularities
- On the relation between Cantor's capacity and the sectional capacity
- Arithmetic capacities on \(\mathbb{P}^ N\)
- Equidistribution of small points
- Limit distribution of small points on algebraic tori
- Arithmetic Hilbert-Samuel theorem
- Positive line bundles on arithmetic surfaces
- An arithmetic Riemann-Roch theorem
- Stetige streng pseudokonvexe Funktionen
- Points entiers sur les surfaces arithmétiques
- On the degree of integral points of a projective space minus a horizontal hypersurface
- Arithmetic over the rings of all algebraic integers.
- On Some Extremal Functions and their Applications in the Theory of Analytic Functions of Several Complex Variables
- Extremal plurisubharmonic functions in $C^N$
- Fonction de Green pluriclomplexe à pole à l'infini sur un espace de Stein parabolique et applications.
- Potential theory and Lefschetz theorems for arithmetic surfaces
- Heights of Projective Varieties and Positive Green Forms
- Existence of the sectional capacity
- Positive Line Bundles on Arithmetic Varieties
- Non-archimedean intersection indices on projective spaces and the Bruhat-Tits building for \(PGL\).
This page was built for publication: Capacity theory and arithmetic intersection theory