Heights of vector bundles and the fundamental group scheme of a curve
From MaRDI portal
Publication:1394589
DOI10.1215/S0012-7094-03-11723-8zbMath1026.11057MaRDI QIDQ1394589
Publication date: 12 December 2003
Published in: Duke Mathematical Journal (Search for Journal in Brave)
fundamental group schemearithmetic surfaceheight of vector bundlesmooth projective curve over a \(p\)-adic field
Algebraic moduli problems, moduli of vector bundles (14D20) [https://zbmath.org/classification/?q=cc:11G30 Curves of arbitrary genus or genus ( e 1) over global fields (11G30)] Varieties over global fields (11G35) Heights (11G50) Vector bundles on curves and their moduli (14H60) Arithmetic varieties and schemes; Arakelov theory; heights (14G40) Group schemes (14L15)
Related Items
On the Grothendieck-Lefschetz theorem for a family of varieties, Galois closure of essentially finite morphisms, The pseudo-fundamental group scheme, Erratum to: ``Heights of vector bundles and the fundamental group scheme of a curve, Barsotti-Tate groups and \(p\)-adic representations of the fundamental group scheme, On the abelian fundamental group scheme of a family of varieties, The fundamental group scheme of a non-reduced scheme, Comparison between the fundamental group scheme of a relative scheme and that of its generic fiber, On the \lq \lq Galois closure\rq \rq for torsors, MODELS OF TORSORS AND THE FUNDAMENTAL GROUP SCHEME
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Arithmetic intersection theory
- Lectures on introduction to moduli problems and orbit spaces
- A vanishing theorem on arithmetic surfaces
- Semi-stability and heights of cycles
- Intrinsic heights of stable varieties and abelian varieties
- An arithmetic Riemann-Roch theorem
- Lectures on an introduction to Grothendieck's theory of the fundamental group
- Généralisation des fonctions abéliennes
- Néron Models
- Schémas en groupes de type $(p,\ldots,p)$
- Hauteurs canoniques sur l'espace de modules des fibrés stables sur une courbe algébrique
- Potential theory and Lefschetz theorems for arithmetic surfaces
- Heights and Geometric Invariant Theory