The uniform convergence of subsequences of the last intermediate row of the Padé table
From MaRDI portal
Publication:1395803
DOI10.1016/S0021-9045(03)00079-0zbMath1021.41008OpenAlexW2016707928MaRDI QIDQ1395803
Publication date: 1 July 2003
Published in: Journal of Approximation Theory (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/s0021-9045(03)00079-0
asymptotic behaviorPadé approximationWiener-Hopf factorizationmeromorphic functionPadé tabledominant poleessential polynomialsparameter groupset of additional limit points
Cites Work
- Quantitative and constructive aspects of the generalized Koenig's and de Montessus's theorems for Padé approximants
- On Wiener-Hopf factorization of meromorphic matrix functions
- Factorization of finite rank Hankel and Toeplitz matrices
- Convergence of rows of the Padé table
- Generalized inversion of block Toeplitz matrices
- Factorization of analytic matrix-valued functions
- Intermediate rows of the Walsh array of best rational approximants to meromorphic functions
- Generalizations of Montessus's theorem on the row convergence of rational interpolations
- CONVERGENCE OF DIAGONAL PADÉ APPROXIMANTS
- On the Row Convergence of the Walsh Array for Meromorphic Functions
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
This page was built for publication: The uniform convergence of subsequences of the last intermediate row of the Padé table