Construction of normal bases for absolute Galois extensions with quaternionic Galois group of order 12
From MaRDI portal
Publication:1396434
DOI10.5802/jtnb.348zbMath1069.11046OpenAlexW2316460388MaRDI QIDQ1396434
Jacques Queyrut, Jean Cougnard
Publication date: 30 June 2003
Published in: Journal de Théorie des Nombres de Bordeaux (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=JTNB_2002__14_1_87_0
Galois theory (11R32) Separable extensions, Galois theory (12F10) Integral representations related to algebraic numbers; Galois module structure of rings of integers (11R33)
Related Items (2)
Computing generators of free modules over orders in group algebras. ⋮ Normal integral bases for 𝐴₄ extensions of the rationals
Uses Software
Cites Work
- Unnamed Item
- Unnamed Item
- Galois module structure and rootnumbers for quaternion extensions of degree \(2^ n\).
- Sur l'arithmétique des extensions galoisiennes à groupe de Galois diédral d'ordre \(2p\)
- Projective modules over binary polyhedral groups.
- Simplification pour les ordres des corps de quaternions totalement définis.
- Arithmetic and Galois module structure for tame extensions.
- Modules sur l'algèbre du groupe quaternionien
- Introduction to Algebraic K-Theory. (AM-72)
- Construction of a normal basis for extensions of \(\mathbb Q\) with group \(D_4\)
This page was built for publication: Construction of normal bases for absolute Galois extensions with quaternionic Galois group of order 12