Nonlinear log-periodogram regression for perturbed fractional processes
DOI10.1016/S0304-4076(03)00115-5zbMath1027.62067OpenAlexW2096486132MaRDI QIDQ1398966
Yixiao Sun, Peter C. B. Phillips
Publication date: 7 August 2003
Published in: Journal of Econometrics (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/s0304-4076(03)00115-5
Asymptotic biasBias reductionAsymptotic normalityRate of convergenceFractional components modelPerturbed fractional processTesting perturbations
Asymptotic properties of parametric estimators (62F12) Applications of statistics to economics (62P20) Time series, auto-correlation, regression, etc. in statistics (GARCH) (62M10) Asymptotic distribution theory in statistics (62E20) Asymptotic properties of nonparametric inference (62G20) Inference from stochastic processes and spectral analysis (62M15)
Related Items (23)
Cites Work
- The detection and estimation of long memory in stochastic volatility
- Higher-order kernel semiparametric M-estimation of long memory
- Log-periodogram regression of time series with long range dependence
- Gaussian semiparametric estimation of long range dependence
- Exact local Whittle estimation of fractional integration
- THE ESTIMATION AND APPLICATION OF LONG MEMORY TIME SERIES MODELS
- Discrimination between monotonic trends and long-range dependence
- The mean squared error of Geweke and Porter-Hudak's estimator of the memory parameter of a long-memory time series
- ON THE LOG PERIODOGRAM REGRESSION ESTIMATOR OF THE MEMORY PARAMETER IN LONG MEMORY STOCHASTIC VOLATILITY MODELS
- Plug‐in Selection of the Number of Frequencies in Regression Estimates of the Memory Parameter of a Long‐memory Time Series
- NON-GAUSSIAN LOG-PERIODOGRAM REGRESSION
- A Bias-Reduced Log-Periodogram Regression Estimator for the Long-Memory Parameter
This page was built for publication: Nonlinear log-periodogram regression for perturbed fractional processes