Existence and uniqueness of solutions for the Navier-Stokes equations with hyperdissipation.
From MaRDI portal
Publication:1399298
DOI10.1016/S0022-247X(02)00451-1zbMath1048.35071OpenAlexW2073619140MaRDI QIDQ1399298
Publication date: 30 July 2003
Published in: Journal of Mathematical Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/s0022-247x(02)00451-1
strong solutionsLittlewood-Paley theoryFourier seriesRiesz transformtwo-dimensional incompressible Navier-Stokes equations
Maximal functions, Littlewood-Paley theory (42B25) Navier-Stokes equations (35Q30) Existence, uniqueness, and regularity theory for incompressible viscous fluids (76D03)
Related Items
Cites Work
- Error estimates and convergence rates for variational Hermite interpolation
- Limiting values under scaling of the Lebesgue function for polynomial interpolation on spheres
- Error estimates for Hermite interpolation on spheres
- Approximation properties of zonal function networks using scattered data on the sphere
- Positive definite functions on spheres
- Spline Interpolation and Smoothing on the Sphere
- On spherical spline interpolation and approximation
- Local error estimates for radial basis function interpolation of scattered data
- Error estimates for scattered data interpolation on spheres
- Multivariate Interpolation and Conditionally Positive Definite Functions. II
- Interpolation by polynomials and radial basis functions on spheres
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item