Statistical gap Tauberian theorems in metric spaces
From MaRDI portal
Publication:1399872
DOI10.1016/S0022-247X(03)00248-8zbMath1024.40003OpenAlexW1964024613MaRDI QIDQ1399872
J. A. Fridy, Mohammad Kazim Khan
Publication date: 30 July 2003
Published in: Journal of Mathematical Analysis and Applications (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/s0022-247x(03)00248-8
statistical convergencecentral limit theoremrandom walkHausdorff methodscircle methodsconvolution methods
Convergence and divergence of series and sequences (40A05) Cesàro, Euler, Nörlund and Hausdorff methods (40G05) Tauberian theorems (40E05)
Related Items (4)
Summability in topological spaces ⋮ Matrix maps of statistically convergent sequences ⋮ A Tauberian theorem for ideal statistical convergence ⋮ Measure theory of statistical convergence
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Lückenumkehrsätze und Lückenperfektheit
- Tauberian theorems and the central limit theorem
- Tauberian theorems for limitation methods admitting a central limit theorem
- Tauberian theorems via statistical convergence
- Der allgemeine Lückenumkehrsatz für das Borel-Verfahren
- A generalization of the Lototsky method of summability
- On a high-indices theorem in Borel summability
- A MATRIX CHARACTERIZATION OF STATISTICAL CONVERGENCE
- Tauberian Theorems for Summability Methods of Random-Walk Type
- ON STATISTICAL CONVERGENCE
- Tauberian theorems for Jakimovski and Karamata‐Stirling methods
- Characterizations of density Tauberian theorems
- Statistical extensions of some classical Tauberian theorems
- On Borel's Method of Summability
- On the Coefficients and the Growth of Gap Power Series
- Tauberian Theorems for Integrals I
- Tauberian Theorems for Integrals II
- Direct Theorems on Methods of Summability
- Direct Theorems on Methods of Summability II
- Sur la convergence statistique
This page was built for publication: Statistical gap Tauberian theorems in metric spaces