\(L^{2}\)-Poisson integral representations of solutions of the Hua system on the bounded symmetric domain \(SU(n,n)\)/\(S(U(n){\times}U(n))\)
From MaRDI portal
Publication:1403837
DOI10.1016/S0022-1236(03)00062-4zbMath1029.22014MaRDI QIDQ1403837
Publication date: 4 September 2003
Published in: Journal of Functional Analysis (Search for Journal in Brave)
Integral representations of solutions to PDEs (35C15) Analysis on real and complex Lie groups (22E30)
Related Items (8)
Lp-Poisson integral representations of solutions of the Hua system on the Lie ball in ℂn ⋮ Lifted infinitesimal holomorphic representation for the \(n\)-dimensional complex hyperbolic ball and for Cartan domains of type I ⋮ \(L^p\)-Poisson integral representations for solutions of the generalized Hua system on line bundles over \(SU (n, n) / S(U(n) \times U(n))\) ⋮ \(L^p\)-Poisson integral representations of solutions of the Hua system on Hermitian symmetric spaces of tube type ⋮ An explicit expression for the Harish-Chandra c-function for the homogeneous space \(SO(2,n)/S(O(2)\times O(n)), \, n\in \{ 2,4,6\}\) ⋮ Fatou's theorems and a generalized Poisson transform of anLp-function over the Shilov boundary of the bounded symmetric domain of type I ⋮ L2-Poisson integral representations of solutions of the Hua system on the ball in ℂ2 ⋮ The generalized spherical function for odd-dimensional bounded symmetric domains of type IV
Cites Work
- Unnamed Item
- Unnamed Item
- Les équations de Hua d'un domaine borné symétrique du type tube. (The equations of Hua for a bounded symmetric domain of tube type)
- The Hua operators on bounded symmetric domains of tube type
- Poisson formula and compound diffusion associated to an overdetermined elliptic system on the Siegel halfplane of rank two
- Hua operators on bounded homogeneous domains in \(\mathbb{C}^ n\) and alternative reproducing kernels for holomorphic functions
- Boundary value problems for the Shilov boundary of a bounded symmetric domain of tube type
- The Poisson integral for generalized half-planes and bounded symmetric domains
- Function spaces and reproducing kernels on bounded symmetric domains
- Solutions du système d'équations différentielles de Hua et intégrales de Poisson-Shilov des fonctions de carré intégrable sur la frontière de Shilov de la boule matricielle de rang deux
This page was built for publication: \(L^{2}\)-Poisson integral representations of solutions of the Hua system on the bounded symmetric domain \(SU(n,n)\)/\(S(U(n){\times}U(n))\)