Hamiltonian double Latin squares
From MaRDI portal
Publication:1403912
DOI10.1016/S0095-8956(02)00029-1zbMath1030.05020OpenAlexW2081919660MaRDI QIDQ1403912
C. A. Rodger, C. St. J. A. Nash-Williams, Anthony J. W. Hilton, Michael E. Mays
Publication date: 20 August 2003
Published in: Journal of Combinatorial Theory. Series B (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/s0095-8956(02)00029-1
Orthogonal arrays, Latin squares, Room squares (05B15) Edge subsets with special properties (factorization, matching, partitioning, covering and packing, etc.) (05C70)
Related Items
On the vertices of the \(d\)-dimensional Birkhoff polytope ⋮ A tripling construction for mutually orthogonal symmetric hamiltonian double Latin squares ⋮ On decomposability of 4-ary distance 2 MDS codes, double-codes, and \(n\)-quasigroups of order 4 ⋮ Amalgamating infinite Latin squares ⋮ SOMEn−2TERRACES FROMnPOWER-SEQUENCES,nBEING AN ODD PRIME POWER ⋮ Hamiltonicity in vertex envelopes of plane cubic graphs ⋮ A quantitative approach to perfect one-factorizations of complete bipartite graphs
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Hamiltonian decompositions of complete graphs
- Hamiltonian decompositions of complete regular s-partite graphs
- Amalgamations of almost regular edge-colourings of simple graphs
- Generalized latin rectangles. II: Embedding
- Further contributions to the theory of F-squares design
- Perfect factorisations of bipartite graphs and Latin squares without proper subrectangles
- A family of perfect factorisations of complete bipartite graphs
- On embedding incomplete symmetric Latin squares
- Thank Evans!
- Embedding Incomplete Latin Squares
- A Solution to the Embedding Problem for Partial Idempotent Latin Squares
- $F$-Square and Orthogonal $F$-Squares Design: A Generalization of Latin Square and Orthogonal Latin Squares Design
- A Combinatorial Theorem with an Application to Latin Rectangles