Landau-type extremal problem for the triple \(\| f\| _{\infty},\| f'\| _{p},\| f\| _{\infty}\) on a finite interval.
From MaRDI portal
Publication:1404928
DOI10.1016/S0021-9045(03)00081-9zbMath1035.41008MaRDI QIDQ1404928
Publication date: 25 August 2003
Published in: Journal of Approximation Theory (Search for Journal in Brave)
extremal functionKolmogorov type inequalitiesLandau type extremal problemsparabolic perfect splinezigzag spline
Inequalities in approximation (Bernstein, Jackson, Nikol'ski?-type inequalities) (41A17) Spline approximation (41A15)
Related Items (5)
The Landau-Kolmogorov problem on a finite interval in the Taikov case ⋮ On inequalities for the norms of intermediate derivatives of multiply monotone functions defined on a finite segment ⋮ Autour d'un probl\`eme extr\'emal \'etudi\'e par Edmund Landau ⋮ On the Landau-Kolmogorov inequality between $\| f' \|_{\infty}$, $\| f \|_{\infty}$ and $\| f \|_1$ ⋮ Examples of Landau--Kolmogorov inequality in integral norms on a finite interval
Cites Work
This page was built for publication: Landau-type extremal problem for the triple \(\| f\| _{\infty},\| f'\| _{p},\| f\| _{\infty}\) on a finite interval.