On the convergence of numerical schemes for the Boltzmann equation.
From MaRDI portal
Publication:1406884
DOI10.1016/S0294-1449(02)00029-XzbMath1038.82082OpenAlexW2046887112MaRDI QIDQ1406884
Publication date: 7 September 2003
Published in: Annales de l'Institut Henri Poincaré. Analyse Non Linéaire (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=AIHPC_2003__20_5_731_0
Lua error in Module:PublicationMSCList at line 37: attempt to index local 'msc_result' (a nil value).
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On the Cauchy problem for Boltzmann equations: Global existence and weak stability
- Regularity of the moments of the solution of a transport equation
- \(L^ p\) regularity of velocity averages
- The Boltzmann equation and its applications
- Existence, stability, and convergence of solutions of discrete velocity models to the Boltzmann equation
- On the spatially homogeneous Boltzmann equation
- Convergence of discrete-velocity schemes for the Boltzmann equation
- Global solutions of Boltzmann's equation and the entropy inequality
- ABOUT THE SPLITTING ALGORITHM FOR BOLTZMANN AND B.G.K. EQUATIONS
- Global weak solutions of Vlasov‐Maxwell systems
- A limiting case for velocity averaging
- Régularité optimale des moyennes en vitesses, II
- Averaging lemmas without time Fourier transform and application to discretized kinetic equations
- Convergence of a semi-discrete kinetic scheme for the system of isentropic gas dynamics with \gamma=3
- A Consistency Result for a Discrete-Velocity Model of the Boltzmann Equation
- Relaxation Schemes for Nonlinear Kinetic Equations
- Approximation simultanée de réels par des nombres rationnels et noyau de collision de l'équation de Boltzmann
- A new consistent discrete-velocity model for the Boltzmann equation
- Time regularity for the system of isentropic gas dynamics with γ= 3
This page was built for publication: On the convergence of numerical schemes for the Boltzmann equation.