Asymptotic analysis of periodically-perforated nonlinear media.
From MaRDI portal
Publication:1406897
DOI10.1016/S0021-7824(01)01226-0zbMath1036.35021MaRDI QIDQ1406897
Publication date: 7 September 2003
Published in: Journal de Mathématiques Pures et Appliquées. Neuvième Série (Search for Journal in Brave)
Asymptotic behavior of solutions to PDEs (35B40) Singular perturbations in context of PDEs (35B25) Homogenization in equilibrium problems of solid mechanics (74Q05) Homogenization in context of PDEs; PDEs in media with periodic structure (35B27)
Related Items
Transmission conditions obtained by homogenisation ⋮ THE NEUMANN SIEVE PROBLEM AND DIMENSIONAL REDUCTION: A MULTISCALE APPROACH ⋮ Homogenization of the Stokes System in a Non-Periodically Perforated Domain ⋮ Aperiodic fractional obstacle problems ⋮ A compactness theorem for functions on Poisson point clouds ⋮ Homogenization in perforated domains at the critical scale ⋮ Asymptotic behavior of the capacity in two-dimensional heterogeneous media ⋮ Random Homogenization ofp-Laplacian with Obstacles in Perforated Domain ⋮ The effect of forest dislocations on the evolution of a phase-field model for plastic slip ⋮ Asymptotic analysis of periodically-perforated nonlinear media at and close to the critical exponent ⋮ Models of defects in atomistic systems ⋮ The periodic unfolding method for perforated domains and Neumann sieve models ⋮ A notion of capacity related to elasticity: applications to homogenization ⋮ Nonlinear Brinkman-type law as a critical case in the polymer fluid filtration ⋮ Γ-convergence for a fault model with slip-weakening friction and periodic barriers ⋮ A Generalized Strange Term in Signorini's Type Problems ⋮ FRACTURE MECHANICS IN PERFORATED DOMAINS: A VARIATIONAL MODEL FOR BRITTLE POROUS MEDIA ⋮ Homogenization of Random Fractional Obstacle Problems via Γ-Convergence ⋮ A variational model of interaction between continuum and discrete systems ⋮ A singularly perturbed Dirichlet problem for the Laplace operator in a periodically perforated domain. A functional analytic approach ⋮ Boundary Homogenization of a Class of Obstacle Problems ⋮ Weak Limits in Nonlinear Conductivity ⋮ Random homogenization of phi-Laplacian equations with highly oscillating obstacles
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- \(W^{1,p}\)-quasiconvexity and variational problems for multiple integrals
- Limits of nonlinear Dirichlet problems in varying domains
- An introduction to \(\Gamma\)-convergence
- Asymptotic behaviour and correctors for linear Dirichlet problems with simultaneously varying operators and domains
- Homogenization of free discontinuity problems
- Quasi-convexity and the lower semicontinuity of multiple integrals
- Analysis of Concentration and Oscillation Effects Generated by Gradients
- Asymptotic Behavior of Nonlinear Elliptic Systems on Varying Domains
- SOME PROPERTIES OF THE SPECTRUM OF NONLINEAR EQUATIONS OF STURM-LIOUVILLE TYPE
- Separation of scales and almost-periodic effects in the asymptotic behaviour of perforated periodic media