Analysis of cuspidal manifolds
From MaRDI portal
Publication:1407676
DOI10.1007/s00208-002-0386-5zbMath1052.58029OpenAlexW1994561380MaRDI QIDQ1407676
Publication date: 16 September 2003
Published in: Mathematische Annalen (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/s00208-002-0386-5
Hardy-Littlewood maximal functionanalysis on manfiolds with cuspsgradient estimates for heat kernelsRiesz-transformshort-time asymptotics of heat kernels
Singular and oscillatory integrals (Calderón-Zygmund, etc.) (42B20) Maximal functions, Littlewood-Paley theory (42B25) Heat and other parabolic equation methods for PDEs on manifolds (58J35)
Related Items (12)
A note on the maximal functions on weighted harmonic AN groups ⋮ Weak type \((1,1)\) of some operators for the Laplacian with drift ⋮ Heat kernel bounds for complex time and Schrödinger Kernel on hyperbolic spaces and Kleinian groups ⋮ Optimal estimates of the heat kernel on cuspidal varieties ⋮ Hardy-Littlewood maximal functions for measure on cusped manifolds. ⋮ Estimations $L^p$ des fonctions du Laplacien sur les variétés cuspidales ⋮ Atomic Hardy-type spaces between \( H^1\) and \( L^1\) on metric spaces with non-doubling measures ⋮ Gundy-Varopoulos martingale transforms and their projection operators on manifolds and vector bundles ⋮ La fonction maximale de Hardy--Littlewood sur une classe d'espaces métriques me\-su\-ra\-bles. (The Hardy--Littlewood maximal function on some metric measure spaces). ⋮ Riesz transform on manifolds and heat kernel regularity ⋮ Uncentered maximal functions on cusp-type manifolds ⋮ Centered Hardy-Littlewood maximal function on product manifolds
This page was built for publication: Analysis of cuspidal manifolds