A new optimized non-FSAL embedded Runge-Kutta-Nyström algorithm of orders 6 and 4 in six stages
DOI10.1016/S0096-3003(02)00436-8zbMath1032.65073OpenAlexW1989897441MaRDI QIDQ1412423
El-Desouky Rahmo, Moawwad E. A. El-Mikkawy
Publication date: 25 November 2003
Published in: Applied Mathematics and Computation (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/s0096-3003(02)00436-8
numerical examplesRunge-Kutta-Nyström methodMACSYMAInitial value problemsFSALembedded algorithmRKNStep size control
Nonlinear ordinary differential equations and systems (34A34) Numerical methods for initial value problems involving ordinary differential equations (65L05) Multistep, Runge-Kutta and extrapolation methods for ordinary differential equations (65L06) Mesh generation, refinement, and adaptive methods for ordinary differential equations (65L50)
Related Items
Uses Software
Cites Work
- Unnamed Item
- New Runge-Kutta-Nyström formula-pairs of order 8(7), 9(8), 10(9) and 11(10) for differential equations of the form \(y=f(x,y)\)
- Runge-Kutta-Nyström triples
- Méthodes de Nystrom pour l'équation différentielle y=f(x,y)
- State interpolation for on-board navigation systems
- Families of Runge-Kutta-Nystrom Formulae
- Practical Runge–Kutta Processes
- High-Order Embedded Runge-Kutta-Nystrom Formulae
- Algorithm 670: a Runge-Kutta-Nyström code
- A better approach for the derivation of the embedded runge-kutta-nystrom pair of orders 6 and 4
- New Runge-Kutta algorithms for numerical simulation in dynamical astronomy
- Interpolating runge-kutta-nyström methods of high order
- Scaled runge-kutta-nyström methods for the second order differential equationÿ=f(x,y)
- Explicit Runge–Kutta Pairs with One More Derivative Evaluation than the Minimum
- Comparing Numerical Methods for Ordinary Differential Equations
- [https://portal.mardi4nfdi.de/wiki/Publication:5678377 A Runge-Kutta Nystr�m algorithm]