Factorizations of an \(n\)-cycle into two \(n\)-cycles
From MaRDI portal
Publication:1413230
DOI10.1016/S0195-6698(03)00107-0zbMath1026.05089WikidataQ114121540 ScholiaQ114121540MaRDI QIDQ1413230
Publication date: 16 November 2003
Published in: European Journal of Combinatorics (Search for Journal in Brave)
Permutations, words, matrices (05A05) Paths and cycles (05C38) Edge subsets with special properties (factorization, matching, partitioning, covering and packing, etc.) (05C70)
Related Items (3)
A versatile combinatorial approach of studying products of long cycles in symmetric groups ⋮ Odd permutations are nicer than even ones ⋮ Quantifying CDS sortability of permutations by strategic pile size
Cites Work
- Unnamed Item
- How many ways can a permutation be factored into two n-cycles?
- Nombre de représentations d'une permutation comme produit de deux cycles de longueurs données
- Factorization of permutations into n-cycles
- Sur les représentations des permutations impaires. (On the representations of odd permutations)
- Decomposing a Permutation into Two Large Cycles: An Enumeration
- Ramified coverings of Riemann surfaces
This page was built for publication: Factorizations of an \(n\)-cycle into two \(n\)-cycles