Representation theory of Neveu-Schwarz and Ramond algebras. II: Fock modules.

From MaRDI portal
Publication:1417736

DOI10.5802/aif.1992zbMath1065.17013OpenAlexW2390122239MaRDI QIDQ1417736

Yoshiyuki Koga, Kenji Iohara

Publication date: 6 January 2004

Published in: Annales de l'Institut Fourier (Search for Journal in Brave)

Full work available at URL: http://www.numdam.org/item?id=AIF_2003__53_6_1755_0




Related Items (19)

Representation theory of \(N=2\) super Virasoro algebra: twisted sectorTensor Product Weight Representations of the Neveu–Schwarz AlgebraFusion rules for the logarithmicN= 1 superconformal minimal models: I. The Neveu–Schwarz sectorThe \(N = 1\) triplet vertex operator superalgebrasThe structure of pre-Verma modules over the \(N = 1\) Ramond algebraThe super-Virasoro singular vectors and Jack superpolynomials relationship revisitedRepresentation theory of Neveu-Schwarz and Ramond algebras. I: Verma modules.Simple restricted modules over the \(N = 1\) Ramond algebra as weak modules for vertex operator superalgebrasIrreducible modules for super-Virasoro algebras from algebraic D-modulesClassification of simple Harish-Chandra modules over the \(N=1\) Ramond algebraClassification of simple Harish-Chandra modules over the Neveu-Schwarz algebra and its contact subalgebraNote on spin modules associated to Z-graded Lie superalgebrasSimple restricted modules for Neveu-Schwarz algebraSuperconformal field theory and Jack superpolynomialsWhittaker modules for the super-Virasoro algebras2-Local superderivations on the super Virasoro algebra and the super W(2,2) algebraOn the Correspondence Between Mirror-Twisted Sectors for N = 2 Supersymmetric Vertex Operator Superalgebras of the Form V ⊗ V and N = 1 Ramond Sectors of VFusion rules for the logarithmic \(N\)=1 superconformal minimal models. II: Including the Ramond sectorSuperconformal minimal models and admissible Jack polynomials



Cites Work


This page was built for publication: Representation theory of Neveu-Schwarz and Ramond algebras. II: Fock modules.