Edge coloring of graphs with small average degrees
From MaRDI portal
Publication:1420599
DOI10.1016/S0012-365X(03)00107-9zbMath1030.05040MaRDI QIDQ1420599
Publication date: 2 February 2004
Published in: Discrete Mathematics (Search for Journal in Brave)
Related Items (10)
Edge coloring of graphs embedded in a surface of nonnegative characteristic ⋮ Class I graphs of nonnegative characteristic without special cycles ⋮ Sizes of critical graphs with small maximum degrees ⋮ A sufficient condition for a planar graph to be class I ⋮ An introduction to the discharging method via graph coloring ⋮ The average degree of an edge-chromatic critical graph ⋮ On the size of critical graphs with maximum degree 8 ⋮ A note on class one graphs with maximum degree six ⋮ Edge colourings of embedded graphs without 4-cycles or chordal-4-cycles ⋮ Edge coloring of graphs with small maximum degrees
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- On graphs critical with respect to edge-colourings
- On critical graphs with chromatic index 4
- On small graphs critical with respect to edge colourings
- On the size of edge-chromatic critical graphs
- Edge colorings of embedded graphs
- Edge colorings of graphs embeddable in a surface of low genus
- Planar graphs of maximum degree seven are Class I
- The chromatic class and the location of a graph on a closed surface
- Some remarks on a paper by Vizing on critical graphs
- Every planar graph with maximum degree 7 is of class 1
This page was built for publication: Edge coloring of graphs with small average degrees