A characterization of the closed unital ideals of the Fourier-Stieltjes algebra \(B\)(\(G\)) of a locally compact amenable group \(G\).
From MaRDI portal
Publication:1421841
DOI10.1016/S0022-1236(03)00143-5zbMath1047.43009OpenAlexW1987282124MaRDI QIDQ1421841
Publication date: 3 February 2004
Published in: Journal of Functional Analysis (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1016/s0022-1236(03)00143-5
Banach algebras of continuous functions, function algebras (46J10) Homomorphisms and multipliers of function spaces on groups, semigroups, etc. (43A22) Linear operators on Banach algebras (47B48)
Related Items (3)
A quantitative version of the non-Abelian idempotent theorem ⋮ Power boundedness in the Fourier and Fourier-Stieltjes algebras on homogeneous spaces ⋮ When is the range of a multiplier on a Banach algebra closed?
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Sur un problème de I. Glicksberg: Les idéaux fermés de type fini de \(M(G)\)
- Some results on the Fourier-Stieltjes algebra of a locally compact group
- Harmonic synthesis for subgroups
- Le théorème des idempotents dans $B(G)$
- Multipliers with Closed Range on Regular Commutative Banach Algebras
- Multipliers with closed range on commutative semisimple Banach algebras
- Topological centers of certain dual algebras
- L'algèbre de Fourier d'un groupe localement compact
- The Multipliers for Functions with Fourier Transforms in Lp.
- When Is μ∗ L 1 Closed?
This page was built for publication: A characterization of the closed unital ideals of the Fourier-Stieltjes algebra \(B\)(\(G\)) of a locally compact amenable group \(G\).