Combining the data from two normal populations to estimate the mean of one when their means difference is bounded
From MaRDI portal
Publication:1421855
DOI10.1016/S0047-259X(03)00049-6zbMath1032.62016MaRDI QIDQ1421855
James V. Zidek, van Eeden, Constance
Publication date: 3 February 2004
Published in: Journal of Multivariate Analysis (Search for Journal in Brave)
Maximum likelihoodLikelihoodMinimaxityWeighted likelihoodNormal meansRelevance weightingRestricted parameter spaces
Point estimation (62F10) Parametric inference under constraints (62F30) Minimax procedures in statistical decision theory (62C20) Admissibility in statistical decision theory (62C15)
Related Items
The weighted likelihood, Local asymptotic minimax estimation of nonregular parameters with translation-scale equivariant maps, Asymptotic properties of maximum weighted likelihood estimators., The use of the weighted likelihood in the natural exponential families with quadratic variance, Nonparametric adaptive likelihood weights
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Statistical decision theory and Bayesian analysis. 2nd ed
- A Bayesian analysis of the minimum AIC procedure
- Estimating a bounded normal mean
- On the fallacy of the likelihood principle
- On the admissibility of the M.L.E. for ordered binomial parameters
- A unified approach to improving equivariant estimators
- The 1988 Neyman Memorial Lecture: A Galtonian perspective on shrinkage estimators
- Improving on equivariant estimators
- Local Likelihood Estimation
- Empirical Bayes Methods for Combining Likelihoods
- An Empirical Distribution Function for Sampling with Incomplete Information
- Maximum Likelihood Estimates of Monotone Parameters
- The Admissibility of Pitman's Estimator of a Single Location Parameter
- On the Estimation of Parameters Restricted by Inequalities
- Minimaxschätzer für den mittelwert ϑ einer normalverteilten zufallsgröβe mit bekannter varianz bei vorgegebener oberer und unterer schranke fiir ϑ
- Inadmissibility of Linearly Invariant Estimators in Truncated Parameter Spaces
- Bayes and admissibility properties of estimators in truncated parameter spaces
- The asymptotic properties of the maximum-relevance weighted likelihood estimators
- Local Polynomial Kernel Regression for Generalized Linear Models and Quasi-Likelihood Functions
- Estimation of the Larger Translation Parameter
- Estimation of the Last Mean of a Monotone Sequence
- The Kernel Estimate of a Regression Function in Likelihood-Based Models
- Estimating one of two normal means when their difference is bounded