Hypergeometric series and irrationality of the values of the Riemann zeta function
From MaRDI portal
Publication:1424590
DOI10.5802/jtnb.406zbMath1041.11051OpenAlexW2014025499MaRDI QIDQ1424590
Publication date: 16 March 2004
Published in: Journal de Théorie des Nombres de Bordeaux (Search for Journal in Brave)
Full work available at URL: http://www.numdam.org/item?id=JTNB_2003__15_1_351_0
(zeta (s)) and (L(s, chi)) (11M06) Classical hypergeometric functions, ({}_2F_1) (33C05) Irrationality; linear independence over a field (11J72)
Related Items (1)
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Hypergeometric functions
- On the method of Thue-Siegel
- On the linear independence of numbers
- A proof that Euler missed. Apéry's proof of the irrationality of \(\zeta(3)\). An informal report
- A few remarks on \(\zeta (3)\)
- Apéry's theorem
- Diophantine properties of numbers related to Catalan's constant
- Padé approximants and balanced hypergeometric series.
- A new proof of the irrationality of \(\zeta (2)\) and \(\zeta (3)\) using Padé approximants
- The group structure for ζ(3)
- Legendre type polynomials and irrationality measures.
- A Note on the Irrationality of ζ(2) and ζ(3)
- THE IRRATIONALITY OF CERTAIN QUANTITIES INVOLVING ζ(3)
- ON IRRATIONALITY OF THE VALUES OF THE FUNCTIONS $ F(x,s)$
- La fonction zêta de Riemann prend une infinité de valeurs irrationnelles aux entiers impairs
- Irrationalité d'au moins un des neuf nombres ζ(5), ζ(7),...,ζ(21)
- On a permutation group related to ζ(2)
- Multiple zeta values: an introduction
- Irrationality of infinitely many values of the zeta function at odd integers.
This page was built for publication: Hypergeometric series and irrationality of the values of the Riemann zeta function