Invariant fundamental solutions and solvability for symmetric spaces of type \( G_C / G_ R \) with only one conjugacy class of Cartan subspaces
From MaRDI portal
Publication:1426895
DOI10.1007/BF02384765zbMath1037.22019OpenAlexW2091696935MaRDI QIDQ1426895
Publication date: 15 March 2004
Published in: Arkiv för Matematik (Search for Journal in Brave)
Full work available at URL: https://doi.org/10.1007/bf02384765
Cites Work
- Unnamed Item
- Unnamed Item
- Unnamed Item
- Global solvability of the Laplacians on pseudo-Riemannian symmetric spaces
- Orbits on affine symmetric spaces under the action of the isotropy subgroups
- Distributions sphériques invariantes sur les espaces symétriques semi-simples \(G_ c/G\). (Invariant spherical distributions over the semi-simple symmetric spaces \(G_ c/G\))
- Orbital integrals on reductive Lie algebras
- Correspondence of spherical distributions between two symmetric spaces of type \(G_ C/G_ R\)
- Orbital functions on \(G_C/G_R\). Inversion formula of orbital integrals and Plancherel formula
- The surjectivity of invariant differential operators on symmetric spaces. I
- Intégrales orbitales sur les groupes de Lie réductifs
- Fundamental Solutions of Invariant Differential Operators on Symmetric Spaces
This page was built for publication: Invariant fundamental solutions and solvability for symmetric spaces of type \( G_C / G_ R \) with only one conjugacy class of Cartan subspaces